
Arizona State University

Senior Capstone Project

Eshu and Ender: Common Language Platforms

for Multiple Command and Control Frameworks

Alexander Aviles, Yousif Alsabah, Alan Ingersoll,

Xun-Yang Leong, Prateek Ravindran
Ira A. Fulton School of Engineering

Sponsored by

Nathan Smith and Matthew Keeley

ProDefense

Acknowledgments

Our team would like to express extreme gratitude to the ProDefense [1]
team, Nathan Smith and Matt Keeley, for the opportunities, direction, and sup-
port they provided over the duration of this project. Their ideas, which spurred
this capstone project, are novel and important. Our team recognizes the fu-
ture prospect that platforms Eshu and Ender provide with regard to offens-
ive Cybsersecurity. We also want to thank Arizona State University’s Ira A.
Fulton School of Engineering staff for the assignment to our apprenticeship un-
der ProDefense. The stars aligned so that we could shed light on a new avenue
of research and development in this Cyber Age.

Lastly, to Nathan Smith, our primary contact and mentor, who guided us
through technological hiccups compounded by inexperience, may this paper
make you proud.

1

Contents

1 Introduction 5

2 Purpose 6

3 Eshu Methodologies and Solutions 8

4 Ender Methodologies and Solutions 12

5 Future Work Discussion 14

6 Conclusions 15

7 Glossary 16
7.1 Technical Terms . 16

8 References 18

2

List of Figures

1 Sequence diagram illustrating the workflow of the Metasploit
framework. 9

2 Sequence diagram illustrating the workflow of the Sliver framework. 9

3

Abstract

Platforms Eshu and Ender were created for red-team operators or other indi-
viduals who utilize multiple command and control frameworks to carry out their
responsibilities. They are meant to serve as a common language platform, a utility
that enables these operators to perform their exploitation and post-exploitation
nearly completely agnostic of the various command and control (C2) frameworks
they may be utilizing during a given engagement. This project is motivated by
the growing dependence on multiple C2s for red teaming. C2 frameworks perform
varying tasks in varying manners with varying outcomes, but the end goal is always
the same: do some thing on some vulnerable machine, or two things, with three
machines, and so on and so forth. Making these tasks easier benefits individuals
who are limited by their active command and control set-up. The original scope
of this project was to take three very common C2s: Metasploit, Sliver, and Havoc
C2, and build a Python library that would interface with the operator between all
three in an agnostic manner. This scope was reduced to two C2s, Metasploit and
Sliver, after the original direction shifted, and academic time constraints arose be-
fore the start of development of the exploit engine. The following is a description
of the problem, the development of solutions, and the results and future work of
the projects Eshu and Ender.

4

1 Introduction

Arizona State University Computer Science majors are required to complete
a Senior year capstone project. A list of available, sponsored propositions are
assigned across teams in the student body. It is the team’s responsibility to co-
ordinate with the sponsor, establish a development plan, and execute that plan
until a minimum viable product is produced to the appeasement of the sponsor.
Our team, having received ProDefense as our sponsor for project "Eshu: Common
Language Platform for Post-Exploitation Frameworks", were tasked with building
Eshu for post-exploitation during the first semester, and Ender for active exploit-
ation during the second semester. We began with post-exploitation as advised by
our sponsor Nathan because he believed post-exploitation development would be
easier to tackle since all of these technologies and methodologies were relatively
new to us. Our team set a biweekly meeting schedule, utilized Jira for project
management, and initiated the project by setting up a development environment.
This environment was a networked Docker Desktop environment that consisted of
the "Operator" service as our attacker machine, as well as the renowned Metas-
ploitable 2 vulnerable machine.

Metasploit and Sliver are incredibly popular command and control frameworks
used in the industry for both research and practical applications. It is these two
frameworks that our common language platforms interface with and communicate
via certain API’s that will be discussed later in the paper. In truth, these two
programs fall short of their full intended capabilities, but we believe heartily as
a team in the implied practicality and usefulness of each program independently.
Eshu and Ender are simply the seed of an idea that could send the Cybersecurity
research industry into a thriving age. We leave this paper as a testament to our
own research and development, which may lead someone to planting this seed and
letting it grow beyond what we conceived to be capable.

5

2 Purpose

Powerful modern command and control (C2) frameworks are the heart of red-
team research and exploitation. They are the vital organ of Lockheed Martin’s
sixth Cyber Kill Chain [2] tenet: ’Command and Control’. C2 frameworks, power-
ful tools for managing implants and agents on compromised machines, have a
variety of options. Operators can choose such tools based on their needs and have
resources like the C2 Matrix [3] to guide them. This flood of possibilities however
can lead to complicated workflows, convoluted learning, and most importantly:
inefficient operations. An operator’s success is dependent on their efficiency and
capability. Therefore, our team looked into solving the problem of maintaining
efficiency while increasing capability within an operator’s active campaign. Many
C2s already incorporate "interfacing" in some way through their own APIs for
other applications, or their own embedded system can be used in relation to a
third party. For instance, Metasploit’s Metasploit Framework (MSF) is capable of
utilizing Sliver payloads using custom payloads [4]. Or in a reverse manner, Sliver
supports Meterpreter staging protocols [5].

Understanding these behaviors, our team wanted to develop an expandable
application that would enable agnostic control between the various C2 frameworks
during an active operation. This post-exploitation platform would be capable of
managing any number of active sessions, set up by operators without worrying
about a specific C2. For instance, an operator using both Metasploit and Sliver
would be able to query their exploits during post-exploitation without explicitly
interacting with both Metasploit’s and Sliver’s user interfaces. This is strictly
Eshu’s proposed capability.

Additionally, active exploitation can be made agnostic as well, to a certain
degree. Deciding which framework to use during exploitation is simply part of the
necessary steps, however, creating a singular environment to perform operations
between multiple C2 is Ender’s proposed capability.

Considering the technology available to us, the ability to achieve these goals
was a guarantee. These products are a quality of life improvement for red-team
operators, simplifying multi-C2 management for in-house penetration testing, vul-

6

nerability analysis, and security consultancy. As long as the products were user-
friendly, support the variety of testing needs customers may have, and improve
general efficiency between multiple frameworks, we could say we achieved our im-
mediate goals.

7

3 Eshu Methodologies and Solutions

Our team first developed Project Eshu. This was our solution to post-exploitation
querying of active implants on vulnerable machines. The baseline goal was to en-
able operators to query and manage already established implants regardless of C2
choice. This meant standardizing commands that retrieved host information, could
execute commands remotely, and handle the various sessions across the multiple
frameworks that an operator may use during any given engagement. We min-
imized these requirements into a single core capability: execute shell commands
remotely. This alone meant we would be able to "query" the target operating
system as well as receive other details. Our team decided to restrict our develop-
mental frameworks to just Metasploit and Sliver specifically after we set up our
development environment. We also needed to understand which API options were
available to us and that we could use for both Metasploit and Sliver to interact
with Eshu. We were aware that Metasploit can be used to bootstrap Sliver exploits
but wanted complete independence with respect to Eshu’s capability to interface
with a variable number of frameworks. We decided on Metasploit’s RPC Client by
using Pymetasploit3 [6] and Sliver’s SliverPy [7] library which utilizes the gRPC
protocol to communicate with both the Sliver server and Sliver client.

Furthermore, considering these were relatively new technologies for us, we had
to understand an actual operator’s workflows. We devised sequence diagrams to
better understand how a red team operator would use these frameworks to perform
their duties.

8

Figure 1: Sequence diagram illustrating the workflow of the Metasploit frame-
work.

Figure 2: Sequence diagram illustrating the workflow of the Sliver framework.

Originally, our team had explored building a REST API with Python Flask
[8], however it limited our development capabilities. For one, we were limited
in flexibility and expansion. The Flask app would have convoluted our designs
unnecessarily be requiring us to adhere to web application standards. We wanted
the C2 interactions to be native to the Operator, so they have full control over
their environments. Therefore, we were forced to pivot in our development of Eshu

9

but already had a lot of the groundwork necessary to complete the project finished,
as well as our understanding of requirements.

Maintaining an rigorous testing and development cycle, we established a set
of critical functionalities in Eshu. We built framework initiation in the backend in
order to tie Eshu to the frameworks actively in use. Additionally, Eshu registers a
C2 per session which maps which framework an exploit session is engaged with, and
then has locally scoped session storage to recall the active sessions once accounted
for by Eshu.

An Operator launches a C2 via Eshu’s backend option for that C2, and then
they must register the instance into Eshu using the Python line:

Eshu.Eshu().register(c2Instance).

Currently, only Metasploit and Sliver are built out in the backend per our
project specifications. However, since each C2 is managed similarly, the structure
and code necessary to add additional C2’s is not hefty.

First is the get-hosts command which identifies and pulls the active exploits
or sessions capable of being managed by Eshu. Second is the critical run-command
function. This function takes the uniquely designated session id for the active ses-
sions stored in Eshu, and a command or set of commands to run against the active
session, as well as an optional OS parameter. The unique id uses nomenclature
which specifies the C2 that the session is connected to and the count of that session
for that C2. Although the names very therefore, the result is technically agnostic
on the Operator’s side.

This summarizes the current state of Eshu’s main class and functionality.

As stated previously, strictly Metasploit and Sliver have been built out in the
backend. Starting with Metasploit, Eshu needs to initiate the MSF RPC client.
Then there are the two functions that work in sync with the Eshu class for each
C2. First is the query-hosts function. This function retrieves the active sessions
and certain metadata regarding each session from the Metasploit server, which get
stored to display the information to the Operator. Secondly, is the send-command
function. This function retrieves the session matching the given session ID and

10

runs the command set provided against the target machine. Lastly, is Sliver’s
backend. Again the first step is to launch the Sliver C2 framework with Eshu so
that it can be registered like earlier.

Then like Metasploit, Sliver accommodates the two primary functionalities
of Eshu in its backend. The query-hosts function similarly identifies the active
sessions and pulls Sliver specific metadata to store and display to the Operator for
post-exploitation operations.

Next, Sliver’s send-command function is built specifically to handle Sliver
beacons, and not sessions it should be noted. Although we limited our testing of
Sliver to beacons only, that is a capability we would like to eventually include. Al-
though hopes for future work will be discussed later. The send-command function
also takes an agnostic session ID and command set, finds the stored session and
attempts to execute the commands against the target machine.

These backend C2 specific classes are critical to Eshu’s functionality. And
their independent nature allows for new additions to be included later, depending
on whichever C2’s the Operator chooses to use during a campaign. Please see the
ProDefense Github [9] for references about the code.

11

4 Ender Methodologies and Solutions

Our team worked on Ender after completing Eshu’s minimum viable product.
First, we developed the actual user interface for Ender. Unlike Eshu, we realized
that for active exploitation we would need a responsive command line interface or
CLI to mimic typical C2 framework behavior because most C2’s at least have a TUI
or GUI that operators can rely on to interface with the framework firsthand. To
mimic this behavior that meant deciding on an architecture to use. Thus, our team
established the Ender-client and Ender-server. This client-server communication
would enable a lightweight client to interact with the operator while the server
performed all of the remote procedure calls to each independent C2 on the backend.
Requirements for Ender included listing and/or searching for available payloads for
both Metasploit’s Exploit modules and Auxiliary modules, enabling an operator
to configure the modules, and execute them, all while receiving feedback via the
RPC in both Ender’s client and server.

Utilizing Pymetasploit3, we first implemented Ender’s Metasploit control be-
fore Sliver. This client-server architecture would also enable us to implement
Sliver’s communication in a more modular manner later on. The client is respons-
ible for passing along and controlling the messages depending on keywords. Then
the server’s handle-message() function would receive the command and perform
accordingly. Once the initial state of Ender was complete, the operator only need
launch the Ender-client and Ender-server and enter the connect command.

Ender ensures programmatic querying once in the process of executing a
Metasploit module to ensure the operator initiating the operation can input proper
parameters depending on the exploit/auxiliary module’s options or their necessit-
ies. This results in Ender’s capability of running and executing any of the modules
chosen by the operator on a target victim machine. The final development for
Metasploit’s end of Ender before attempting to code the agnostic session handling
which is the end goal, was catching a Meterpreter shell.

We were able to catch a Meterpreter shell, which is a payload that establishes
an interactive channel between the attacker and the victim. This is performed
by setting a listener on the local host, triggering the payload, and then receiving

12

the interactive session. Once the interactive session is complete, which establishes
a basic shell, running the "post multi/manage/shell_to_meterpreter" command
establishes the Meterpreter shell.

Implementing Sliver had its own difficulties, specifically when it came to
Sliver’s own client and server. This required us to ensure when interacting with
Ender that the Ender client and server always stated connected to the Sliver client
and server. Original implementation of Sliver behavior in Ender was consolid-
ated to a singular function, however that was extrapolated to multiple modular
functions. These functions work together to establish, maintain, and control the
traffic between Ender and Sliver. Additionally, Ender’s implementation allows an
operator to establish profile config files, generate beacons, use multiplayer mode
in the server, set up an http listener, and make general command queries.

The primary end goal for Ender’s capability was enabling agnostic implant
handling, or simply performing as a session handler. For instance, once an active
session was established between Metasploit and the operator or Sliver and the oper-
ator, they could interchangeably transfer control of the implant between connected
frameworks. This is currently not possible to our knowledge however. Considering
we used Metasploit’s RPC API and Sliver’s gRPC protocols, the two handle their
independent channel communications differently and therefore we were limited in
our ability to handle these implants in a completely agnostic manner. Therefore,
we attempted a more brute force methodology of enabling the operator to per-
form techniques that transfer control from one C2 to another by injecting new
sessions or implants via the already in control C2. The two methods considered
were Session Passing and "Bring Your Own Stager" or BYOS [10].

Like Eshu, please see the project code on the ProDefense Github [11] for
reference.

13

5 Future Work Discussion

Unfortunately, the goal to enable an operator to perform "Bring Your Own
Stager" session passing as a primary alternative and session passing as a secondary
back up methodology were not fruitful in time for our Senior Capstone Exposition
Day. These two implementations would have turned Ender into a near unified
session management tool, however our final attempts only resulted in a grouping
of template or skeleton code with a few functions that could work but did not
result in an active session transfer.

Beyond the addition of more C2 frameworks such as Havoc or Cobalt Strike,
what we believe would be valuable to include later are the handling of Sliver’s
sessions along with the beacons implementation already in place. Sliver beacons
and sessions are similar but still behave differently enough that it would require
additional programming to have full interoperability for the chosen implants and
payloads on Sliver. Metasploit already works with both exploit and auxiliary
modules. So it is important to consider what types of implants a framework is
capable of generating and staging in order to incorporate full functionality for
future frameworks.

Lastly, our team firmly believes this is a novel idea, and a novel project that
may be capable of significantly impacting the security industry. Therefore, with
approval from our sponsors, we have opened up Eshu and Ender for open source
development. We understand these are not completely secure programs, or com-
plete programs in any sense of the word. However, we are proud of what we did
accomplish and what it implies for the capabilities of a project like this in the
future.

14

6 Conclusions

In conclusion, Eshu and Ender are projects that could drastically change the
nature of Cybersecurity. These platforms set a precedent for the future of this field,
which is all about innovating ways to advance our mindsets and our capabilities as
a common people. With all of this team’s due effort in the final stretch before the
project close, we were unsuccessful in implementing Ender’s would-be standout
characteristic of session handling in an agnostic manner. But we are proud of
our work. We have developed products that work, are efficient, and consolidated.
Eshu and Ender are stepping stones into the ways professionals can take advantage
of the technology they use everyday, and re-purpose the way they approach their
daily tasks. This is an ever-evolving field. Security practitioners cannot become
complacent or they will be overtaken by the wave of innovation and discovery that
occurs on a literal daily basis. We hope the right person can pick up where we left
on in a future endeavor that sees total management from a single point of contact
for multiple command and control frameworks come into existence.

15

7 Glossary

This glossary details the list of special terminology (abbreviated or not) that
is referenced throughout the paper.

7.1 Technical Terms

C2 Command and Control Framework, a tool utilized in the context of Cyber-
security to coordinate incident response, perform penetration testing, and
main systems control.

C2 Matrix a resource pool for red-team operators of command and control frame-
works.

CLI Command Line Interface.

Docker Desktop Docker Desktop, application for running containerized services
and applications.

Ender Common Language Exploit Engine for multiple Command and Control
Frameworks.

Eshu Common Language Post-Exploitation Platform for multiple Command and
Control Frameworks.

Jira Jira Software, a project management system.

Metasploit Metasploit Framework, a command and control (C2) framework.

Metasploitable 2 a vulnerable Ubuntu Linux virtual machine.

Meterpreter a Metasploit exploit payload that provides an interactive shell when
executed.

pymetasploit3 a Metasploit automation library.

RPC Remote Procedure Call.

16

Sliver Sliver C2, a command and control (C2) framework.

SliverPy a client library for a Python gRPC to communicate with Sliver over
Mutual TLS.

17

8 References

[1] M. Keeley. ‘Prodefense - about,’ Accessed: 23 Jan. 2025. [Online]. Available:
https://www.prodefense.io/about

[2] L. Martin. ‘The cyber kill chain,’ Accessed: 26 Mar. 2025. [Online]. Available:
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber- kill -
chain.html

[3] J. Orchilles. ‘C2 matrix,’ Accessed: 26 Mar. 2025. [Online]. Available: https:
//howto.thec2matrix.com/

[4] Z. Goldman. ‘Byos: Bring your own stager,’ Accessed: 26 Mar. 2025. [Online].
Available: https://www.rapid7.com/blog/post/2022/09/16/metasploit-
weekly-wrap-up-176/

[5] B. Fox. ‘Stagers,’ Accessed: 26 Mar. 2025. [Online]. Available: https://sliver.
sh/docs?name=Stagers

[6] C. C. Team. ‘Pymetasploit3 – metasploit automation library,’ Accessed:
28 Mar. 2025. [Online]. Available: https://coalfire.com/the-coalfire-blog/
pymetasploit3-metasploit-automation-library

[7] moloch. ‘Welcome to sliverpy’s documentation!’ Accessed: 28 Mar. 2025. [On-
line]. Available: https://sliverpy.readthedocs.io/en/latest/

[8] Pallets. ‘Byos: Bring your own stager,’ Accessed: 1 May 2025. [Online]. Avail-
able: https://flask.palletsprojects.com/en/stable/

[9] M. Keeley. ‘Prodefense,’ Accessed: 28 Apr. 2025. [Online]. Available: https:
//github.com/ProDefense/Eshu

[10] P. Projects. ‘Flask,’ Accessed: 15 Apr. 2025. [Online]. Available: https://
www.rapid7.com/blog/post/2022/09/16/metasploit-weekly-wrap-up-176/

[11] M. Keeley. ‘Prodefense,’ Accessed: 28 Apr. 2025. [Online]. Available: https:
//github.com/ProDefense/Ender

18

https://www.prodefense.io/about
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://howto.thec2matrix.com/
https://howto.thec2matrix.com/
https://www.rapid7.com/blog/post/2022/09/16/metasploit-weekly-wrap-up-176/
https://www.rapid7.com/blog/post/2022/09/16/metasploit-weekly-wrap-up-176/
https://sliver.sh/docs?name=Stagers
https://sliver.sh/docs?name=Stagers
https://coalfire.com/the-coalfire-blog/pymetasploit3-metasploit-automation-library
https://coalfire.com/the-coalfire-blog/pymetasploit3-metasploit-automation-library
https://sliverpy.readthedocs.io/en/latest/
https://flask.palletsprojects.com/en/stable/
https://github.com/ProDefense/Eshu
https://github.com/ProDefense/Eshu
https://www.rapid7.com/blog/post/2022/09/16/metasploit-weekly-wrap-up-176/
https://www.rapid7.com/blog/post/2022/09/16/metasploit-weekly-wrap-up-176/
https://github.com/ProDefense/Ender
https://github.com/ProDefense/Ender

	Introduction
	Purpose
	Eshu Methodologies and Solutions
	Ender Methodologies and Solutions
	Future Work Discussion
	Conclusions
	Glossary
	Technical Terms

	References

