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Abstract

Several extensive research studies have produced
machine learning models that can classify malicious
files according to the family in which they belong.
Many studies also explore how to reverse engineer
malware binaries for feature extraction, and there
exist open-source malware datasets consisting of
millions of processed benign and malware samples
classified by family. We work to improve the ef-
fort against malware attacks; to further the study of
SmokelL.oader and ZeusBot malware by reverse engi-
neering the samples, extracting features, and train-
ing and testing a machine learning model on the
binary samples similarity for malware classification
by family. Here we draw ideas from previous efforts
to reverse engineer binaries and create an original
feature model to train a machine learning model to
achieve a highly accurate model that can classify
binary samples as benign, as malware belonging to
the SmokeLoader family, or as malware belonging to
the ZeusBot family. Increasing the speed in which
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malware can be identified through a machine learn-
ing model will provide a quicker response to cyber
attacks. It also allows for new samples to be quickly
detected and allows cybersecurity efforts to combat
malware before it becomes widely distributed.
Keywords: Malware classification, Machine learn-
ing, Random forest, Reverse engineering, Feature
extraction, Binary similarity

1 Introduction

Cybercrime remains an ever-changing and dynamic
threat to computer systems and networks today.
An assortment of malware exists, differing in de-
sign, function, and specific aim, rendering the task
of protecting against such attacks quite difficult.
Malicious code and operations range from malware
groups such as spyware, viruses, rootkits, trojans,
adware, ransomware, and worms. There exists a
major challenge in confronting these attacks and
activities in large part because of how many differ-
ent types of malware exist, and this is further com-



pounded and exacerbated by their sub-variants. An
example of such is the many different types of trojan
malware that exist, which, differing in their design
and function, makes the task of trying to protect
just against trojan malware as being considerably
difficult in its own right.

To combat this, the correct classification of mal-
ware in terms of overall malware group (i.e. spy-
ware, viruses, rootkits, and such), as well as their
sub-variants, which can be considered as malicious
families of code, is essential. By being able to
quickly analyze and classify a given sample of code
as belonging to a specific malware family, and by
extension, malware group, enhances understanding
of current and new threats, and may serve to im-
prove the pace of response to these threats.

Malware today incorporates many obfuscation
techniques and methods to change their code sig-
nature, but these do not alter their behavior and
or functionality. Abilities do exist to reverse en-
gineer the malware binaries, despite these obfus-
cations, and many binaries have been fully reverse
engineered and stored in massive repositories such
as those in Malware Bazaar, to enable the study of
these samples [1]. As such, analysis of these samples
can yield many considerable similarities for partic-
ular malware sub-variants or families.

In this project, we take advantage of these simi-
larities as features upon which several sub-variants
of malware can be defined and classified. These fea-
tures include a mix of generic fields as well as fea-
tures such as functions used that are very common
to specific malware families and can be used to hone
in on malware types. Since many malware samples
function by way of abusing common built-in oper-
ating system functions and libraries, we can take
advantage of the specific functions used by given
samples as ways to indicate what the sample is try-
ing to do, and therefore classify it accordingly.

2 Dataset

For this project we chose to work on classifying us-
ing machine learning the sub-variants of the trojan
malware family. Trojan malware consists of many
different sub-variants that differ in what they specif-
ically target and how they target their intended re-
cipients. Of course, these sub-variants share simi-
larities, ones that this project attempts to exploit
as features that can be used for their classification.

Since these sub-variants are all trojans as well, these
features can be used across several sub-variants,
since similarities exist between these malware fam-
ilies as well.

This project involved reverse-engineering and an-
alyzing samples of two initial families belonging to
the trojan malware group: SmokeLoader, and Zeus-
Bot. Additional samples of benign software were
also acquired to be labeled as being non-malicious
(“Benign”) as well. Table 7?7 shows a portion of
these reverse engineered samples, including their
corresponding features as well as their known clas-
sification. The total number of sample binaries ac-
quired included 150 with a roughly balanced mix of
SmokeLoader, ZeusBot, and Benign samples.

2.1 Data Acquisition

These binaries were acquired primarily from the on-
line repository Malware Bazaar, which had clas-
sified binaries into their respective malware fam-
ily groups, and allowed us to analyze them and
observe what similarities existed between different
samples of SmokeLoader as well as between differ-
ent samples of ZeusBot. In addition, benign sam-
ples of code were also included as part of the ef-
fort to be able to distinguish between potentially-
harmful and harmless sample code. These benign
samples were acquired from the Windows-Classic-
Samples [2] and Windows-Universal-Samples [3]
repositories on GitHub, and used the same features.

As can be seen in Table 7?7, observations and
analysis of samples of SmokeLoader and ZeusBot,
between samples of the same type and between the
malware families yielded several features. These
features can be viewed in greater detail in Table 1,
along with their respective definitions.

2.2 Data Preparation

Once the malware samples were acquired from the
repositories and reverse-engineered to acquire the
respective fields, the data was then cleaned, format-
ted, and went into an encoding script to prepare
it for training and testing in a machine learning
model.

Several fields above were not numerical values,
and therefore required an encoding scheme. One-
hot encoding is a common scheme used to encode
string data, where a new feature column is gener-
ated for an instance of a given string [5]. As a re-



Table 1: Feature Definitions

3 Techniques and Tools

Feature

Definition

MD5 Hash
SHA256 Hash

Image Size
Num Imports

3.1 Machine Learning Model Selection

An alphanumeric string that can be use

to identify a malware file.
An alphanumeric String that can be useMany models have been used and are aCtiVely being

to identify a malware file. used and researched for applications pertaining to
Numerical value representing file size. malware detection and classification. Such include
The number of fun?tlons imported by thencoders and decoders, transformers, and random
given Sampl_e' This corresponds to thf%)rests. This latter-most model seemed of partic-
listed functions under the “IMPORTS” . . . R
ular interest due to its considerable flexibility as a
feature column. .
A list of modules and functions belonngdel' Random forest models essentially aggregate
ing to a given operating system that werdecision trees, where each decision tree is different
noticeably leveraged by the given samplén how it determines classifications, thereby allow-
Each module and function name is a strining for increased variability and flexibility in anal-

As a consequence, several strengths emerge in us-

Imports
value. If a file was packed, or no matchinggis.
imports found, this was noted in the data.
Target The name of the malware family the given

sample belongs to, which included: “Bdng this model, notably that they are able to learn

nign”, “SmokeLoader”, and “ZeusBot”.

non-linear decision boundaries, can reduce overfit-

sult, features such as “MD5 HASH” and “SHA256
HASH” have new features developed where the
name of the new feature is the previous feature pre-
fix (i.e. “MD5 HASH” or “SHA256 HASH”) fol-
lowed by the value of that feature for a given sam-
ple.

Similarly, features with list data types, such
as the “IMPORTS” have values separated out
by spaces. Ensuring that such values are space-
separated was done as part of the cleaning phase of
the data, and once done, the encoding phase took
each value, and like the string values for the hash
features, one-hot encoded each list value. This re-
sulted in a new feature column for each function
or module name, which again followed the naming
convention of using the previous feature name prefix
and the name of the sample value (i.e. the module
or function name).

Since many samples used the same modules or
functions, this method did not produce an over-
abundance of features with respect to the sample
size. However, it should be noted that this method
of encoding can produce such an overabundance and
such needs to be reviewed as one follows this pro-
cess.

The original features for the hash values and
listed functions, post-encoding, were dropped from
the processed data set file to remove all non-numeric
fields and data.

Ting due to a number of different decision trees
produced, can provide information with respect to
which features are actually used to split the data
and reach decisions as well as which features mini-
mally help towards that end, and also enable consid-
erable scalability and high accuracy, even for small
sample sets. Given these strengths, this model
seemed optimal towards our use-cases and end goal
of developing a quick and robust method for mal-
ware classification.

Random forests require minimal hyperparameter
tuning and as such provided high-level accuracies
for our sample set right out-of-the-box. However,
some tuning was done, particularly including chang-
ing the number of samples needed for an internal
node to split and the randomness of the bootstrap-
ping. The parameter min_samples_split was set
to 10 from its default value of 2 and the parameter
random state was set to 5 from its default value
of None. The rest of the parameters were left un-
changed.

3.2 Training and Testing

In addition to tuning the model slightly, several
training and testing splits were made, but given the
size of our small sample set, we resorted to using a
split of 60-40, where 60% of our data samples were
used for training and 40% for testing. We did not
have a validation data set.



4 Results

For the model created that was trained using only
the data that we collected, we tested two different
datasets. The first dataset contained all the fea-
tures like hashes, functions, and number of imports,
whereas the second dataset contained all of the fea-
tures except for the hashes. When running both of
these datasets through the model without changing
any of the hyperparameters, the accuracy for the
first dataset, shown in Table 2, was 95% and the
accuracy for the second dataset, shown in Table 3,
was about 98%. Precision, recall, and F1 score were
also calculated for both datasets and are shown in
the tables below. Table 4 displays the statistics for
the model using the first dataset that contained all
features concatenated with the filtered BODMAS
dataset. See Conclusion and Future Work section
for details.

Table 2: Performance Metrics: Dataset with All

Features
Statistic Result
Accuracy 0.95
Precision =~ 0.9541
Recall 0.95
F1 ~ 0.9494

Table 3: Performance Metrics: Dataset without

Hash Features

Statistic Result
Accuracy =~ 0.9833
Precision =~ 0.9843
Recall ~ 0.9833
F1 ~ 0.9834

Table 4: Performance Metrics: Combined Dataset
with BODMAS

Statistic Result
Accuracy =~ 0.9966
Precision = 0.9967
Recall ~ 0.9966
F1 ~ 0.9966

5 Analysis and Findings

The two tests for this project indicate several pos-
itive points about our initial hypothesis in using
common operating system functions and modules,
along with a Random Forest model to classify mal-
ware. Due to the important nature of malware clas-
sification, and the catastrophic consequences that
can result from failing to correctly classify malware,
the most important optimization was for recall. Re-
call effectively evaluates how well the model is able
to classify all positive instances of a given target
class with respect to the actual total number of pos-
itive instances of that target class. Mathematically
this is represented as the number of true positive
instances identified by the model divided by the to-
tal number of positive instances for a given class.
As such, both tests indicated high scores for recall,
with Table 2 results showing a recall of 95% and
Table 3 that of 98.3%.

Our initial benchmark accuracy with respect to
recall was at 90%; that is, we were hoping to achieve
a 90% minimum in recall accuracy. Since these two
scores exceed that, several points come into light.
First, the use of common operating system func-
tions and modules as features can be used for mal-
ware detection with considerable accuracy. The cre-
ation of so many new features due to the encoding
technique was not detrimental to the performance
of the model, for which the choice of the model was
likely a contributing factor in offsetting this poten-
tial issue. Second, our initial feature model included
an over-abundance of features that actually nega-
tively affected the performance of the model and
that a reduction in the features, namely the hashes,
improved the score considerably by about 3.3%.

This second finding is of particular interest and
importance here. Namely, the hash functions are
not particularly telling about what a given sam-
ple does or how it functions. Rather, the list of
functions and modules do that. Therefore, though
hashes are used in other malware analysis tools as
features [1], their impact here is negative, and the
use of function and module names is both logical
and experimentally valid for use as a feature model.
Any other features added that serve to complement
the function and module names, such as our use of
the number of functions and modules used by each
sample, provides additional context to the function
and module names, which aids in overall accuracy.



It seems that using features that do not provide con-
text of functionality may not be bad, but the hash
features are seemingly semantically null insofar as
no significant distinguishing information could be
gained from them (every sample has a unique hash
value). Our disposition is that careful analysis of
any feature should be based on at least two things:
one, the feature explains to some significant de-
gree how a given sample functions; two, the feature
should be a rather dynamic quality of a given set of
samples, that is, the feature should be a necessary
property about samples. In the case of the func-
tion and module names, this set of features explains
what operating system functions a sample uses, and
essentially serves as a property of all samples since
every program uses and needs to use operating sys-
tem functionality.

5.1 Alternative Approach

Other options were explored to increase the accu-
racy of our model. We explored “merging” our
dataset with an open-source dataset composed of
processed benign and malignant samples. Ulti-
mately, we chose to work with the BODMAS Mal-
ware Dataset because the dataset was large enough
to increase our sample size significantly without be-
ing too large to be inconvenient to work with [4].
The BODMAS dataset contains 134,435 total pro-
cessed samples while other datasets such as the
EMBER dataset contain over 1 million total sam-
ples [11].

Both EMBER and BODMAS datasets use the
same feature extraction code from the LIEF
project [12], which is also open-source. After an-
alyzing the feature engineering code, we concluded
that the main categories of features were extracted:
histogram, byte entropy, strings, general, header,
section, imports, exports, and data directories.
Fach feature is defined as a class in the feature en-
gineering code, and further examination must be
used to identify exactly what features are being ex-
tracted from an arbitrary feature, such as the num-
ber of imports.

Given time constraints, the datasets were con-
catenated in order to have one dataset to train and
test the model on. This was achieved by filling in
the missing features in our dataset with null values
and concatenating the datasets (our dataset con-
tains 348 features per sample, while BODMAS has
2,381 features per sample). This is not ideal as

it diverges from our original feature model. Ide-
ally, we would have run the samples collected by
our team through the feature extraction code used
by the BODMAS and EMBER datasets to create
one uniform dataset that has over 2,381 features
extracted.

This alternative approach was eventually aban-
doned because it deviates too much from our origi-
nal goal and feature model used in the final iteration
of our machine learning model. Despite its aban-
donment, the sample size was increased from 149
samples to 1,490 samples and achieved an accuracy
rate of 99.6%. Further work should include a uni-
form dataset with a comparable amount of features
to the BODMAS dataset.

6 Conclusion and Future Work

In this project, we examined the efficacy of using
the Random Forest machine learning model to clas-
sify sub-variants of the trojan malware group. Our
work is clearly limited in scope and size, but the
work shown here does show potential and can be
expanded upon.

Namely, it is of interest of how many malware
families may be added as part of a dataset. In our
project, we only used Smokeloader, ZeusBot, and
Benign samples, but many other trojans subcate-
gories could be added using the same feature model.
Expanding the number of samples for each family
we had, as well as adding new families in proper pro-
portion to existing families, would yield a more ca-
pable model of classifying more sub-variants. How-
ever, it would also be interesting to note if limits
exist on the number of families that might be clas-
sified without performance suffering.

It is worth noting furthermore that achieving a
balance of various malware families may not be
easy to do. In the case of this project, samples of
SmokeLoader and ZeusBot were in abundance, such
that creating a dataset that balances the number of
families out evenly was an easy task. However, some
malware families have very few, if any, available
samples for training and testing, rendering this a
worthwhile consideration. In such a case, the selec-
tion of the Random Forest model does help in pro-
tecting against this, since the model’s design allows
for finding ways to classify one family from another
based on feature values, which does not depend too
heavily on the number of samples available. How-



ever, there is of course a logical limit to this, since
if there are too few samples, and such samples have
very similar feature values to others, accuracy may
come into question, and dealing with this problem
may require other techniques not mentioned in this
paper.

One solution to this as well as to improving
overall performance involves expanding the feature
model. The feature model is rather robust and dy-
namic insofar as it builds features according to func-
tions used by the malware. Inevitably, malware
will need to use some operating system modules
and functions, and so such features can be used.
But, other features are also promising and just as
dynamic, including the use of visualizing malware
binaries as image files. This method has been pro-
posed and used by others with considerable accura-
cies being reached for classification [5].

In all, we find that the use of functions and some
simple sample metrics such as file size and the num-
ber of imports show promise in analyzing and clas-
sifying malware. In further pursuance of this work
we believe that the next step is to increase the num-
ber of different malware variants that are included
in the data set for training and testing. The number
added would depend on how many could be added
to the data set without overwhelming the Random
Forest model and causing the performance to suf-
fer. Just as this was mentioned earlier, this would
require further study, but doing so is obviously nec-
essary for determining how many Random Forest
models would be needed for a practical application.
Other steps after this would involve expanding and
or modifying the feature model to include pixel im-
ages or other dynamic features, as they were de-
fined here in this paper. Ultimately, the build-up of
these steps mentioned here would shed great light
on the accuracies and constraints of the dynamic
feature approach using Random Forest models, and
elaborate on their possible and promising utility for
practical applications for malware classification.
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