
ProDefense - A Binary Similarity
Model for Malware Classification

ProDefense

Research Deliverable
Prepared by ProDefense Capstone Team
Reverse Engineering
Gursharan Singh, Karanpreet Singh

Data Engineering
Krystian Bista, Rishik Kolli

Machine Learning
Darci Vincent , Riley Hall

Agenda

3

4

6

7

8

14

16

18

12Purpose

Introduction / Requirements

Project Scope

Malware / Sample Selection

Reverse Engineering

Feature Engineering

Neural Network Training

Value Created

Smoke Loader and ZBot Findings

19 Takeaways / Next Steps

Enhancing our software's ability to automatically detect potential malware
using machine learning algorithms is crucial to effectively combat the
ever-evolving threats to our computers, networks, and data security,
reducing the workload and speeding up the detection process.

Purpose

According to IBM’s 2022 Data
Breach Report, 83% of
organizations experiences more
than one data branch during 2022

According to Verizon’s 2022 Data
Breach Investigations Report, the
total number number of
ransomware attacks surged by 13%

● A Binary Similarity Model is an analytical approach of examining and
computing the similarity of some input (i.e. functions, files) against some
standard of comparison.
○ This project is a perfect example insofar as some unknown program file can be

examined and its similarity to known malware can be computed; if such
similarity is high, then it is likely that such a file is malware and of that malware
type.

● With a plethora of malware variants and benign programs, it is imperative
to train a neural network that will compute the degree of similarity
between some given input against malware inputs that the neural network
was trained on to detect.

Binary Similarity Model

● Fundamentally, the key necessities of the output of this project is a
functional neural network(s), that can read in files consisting of program
data, and compute a similarity score of the given file against some
malware files of various types.

● This similarity score would fundamentally place the input file within
different malware families, or not at all if it is not malware.

● The remaining core topics of this project, such as technology stacks and
tools, are up to research and design decisions made by the team
throughout this course.

Requirements

● At its core, this project requires three fundamental phases:

● First – Malware Selection, Reverse Engineering, and Data Gathering

● Second – Feature Engineering, Data Formatting & Preparation for the Neural Network

● Third – Development, training, and testing of the Neural Network

Project Key Deliverables

● Goal - Finding the most popular and widespread
type of malwares.

● Findings - Remote Access Trojans where one of
the most popular forms of Malware types within
all the different types but also within the Trojan
Family.

● Researching for particular malwares, Smoke
Loader and Zbot where found on many different
lists from government websites, to hacker
forums.

Malware Selection

● Detect It Easy - Portable Executable (PE) packers
detection tool, which allows us to analyze the
malicious and suspicious content of malware
binaries.

● IDA - Interactive disassembler allows us to reverse
engineer and analyze executable files such as
malware binaries, also offers control glow graph
view, and scripting support.

● Sandbox Environment - Windows 10 machine for
analyzing malware, in a safe environment.

Reverse Engineering

● WinDbg: Kernel Debugger
● Process Hacker 2
● Various IDA Python Plugins to aid reversing
● ChatGPT, for translating asm to readable c++ code

Additional Tools For Reversing/Research

● Goal - Accrue as many samples/strain of
each family of malware family for both
Zbot and Smoke Loader.

● Findings - Acquired sample strains for
malware analysis.

○ VirusTotal
○ Malware Bazar
○ VX Underground

Data Gathering

● C++:

 - Windows API, able to read/dump file
memory

- Most malware are written in C/C++

- Robust, low level language. Best of
memory reading/write/ exploiting.

Windows API can be used by anyone with line
of code to read another programs memory.

Programming Language

Smoke Loader: The first findings

Smoke Loader: Analysis thus far

● Examining common and comparing features pertaining to non-malicious
programs and those that are malicious.

○ Static analysis of two malware families to start with: SmokeLoader and ZBot.

● Choosing feature categories to develop a feature model.
○ Developed a simple, but wholesome set of features for initial extraction and

experimentation.

● Developing Python scripts to automate development of neural network
input files built using NumpPy arrays and Pandas dataframes.

Feature Engineering, Data Formatting, and Preparation

Feature Engineering Process Diagram

Reverse Engineering and
Data Extraction

Feature Extraction and
Formatting

Feature Matrices = Neural
Network Input

Looking into…

● Pytorch
● VulSeeker
● Gemini
● BinFinder
● Algorithms:

○ Random Forest
○ KNN
○ XgBoost

■ We will be comparing multiple
algorithms against one another
to determine which is most
accurate

Development, Training, and Testing of the Neural Networks

Machine Learning Diagram

● Automates the detection process of malware files, indicating whether a file
is malware or not.

○ Enables the customer to be free from having to manually perform static analysis on
program files.

● Categorizes the type of malware family that a given file may belong to in
addition to indicating whether a file may be malicious or not.

○ Provides some level of insight into the type of malware provided, thus giving the customer
a better understanding of the malware input at hand.

Value Created

● The complexity of breaking down a project into requirements, organizing team functions,
determining tasks per sprint.

● The heavy assortment and needed refinement of features that can be used to classify a
binary as either malware, belonging to a specific malware family, and being
non-malicious.

● Different types of neural networks, their purposes, strengths and weaknesses.
● Further Optimization of ML model requires considerable data.
● With number of neural network types that are available, choosing the one to fit the data

problem proved to be challenging.

Lessons Learned

● To determine the robustness of the current prototype.
○ Begin experimenting with hyperparameters such as the depth of the neural network,

activation function, and number of inputs.

● Coupled with researching other open source machine learning models
that we can modify using our data inputs to train.

● Reconsideration, evaluation, and enhancements of the feature model.

Future Plans for Next Semester

References

https://hbr.org/2023/05/the-devastating-business-impacts-of-a-cyber-breach

https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-216a

https://www.crowdstrike.com/cybersecurity-101/malware/types-of-malware/

https://www.ibm.com/topics/knn#:~:text=The%20k%2Dnearest%20neighbors%20algorithm%2C%20also%20k
nown%20as%20KNN%20or,of%20an%20individual%20data%20point

https://hbr.org/2023/05/the-devastating-business-impacts-of-a-cyber-breach
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-216a
https://www.crowdstrike.com/cybersecurity-101/malware/types-of-malware/
https://www.ibm.com/topics/knn#:~:text=The%20k%2Dnearest%20neighbors%20algorithm%2C%20also%20known%20as%20KNN%20or,of%20an%20individual%20data%20point
https://www.ibm.com/topics/knn#:~:text=The%20k%2Dnearest%20neighbors%20algorithm%2C%20also%20known%20as%20KNN%20or,of%20an%20individual%20data%20point

