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Purpose

Enhancing our software’s ability to automatically detect potential malware
using machine learning algorithms is crucial to effectively combat the
ever-evolving threats to our computers, networks, and data security,
reducing the workload and speeding up the detection process.

According to IBM's 2022 Data According to Verizon's 2022 Data
Breach Report, 83% of Breach Investigations Report, the
organizations experiences more total number number of

than one data branch during 2022 ransomware attacks surged by 13%



Binary Similarity Model

e A Binary Similarity Model is an analytical approach of examining and
computing the similarity of some input (i.e. functions, files) against some

standard of comparison.
o This project is a perfect example insofar as some unknown program file can be
examined and its similarity to known malware can be computed; if such
similarity is high, then it is likely that such a file is malware and of that malware

type.

e With a plethora of malware variants and benign programs, it is imperative
to train a neural network that will compute the degree of similarity
between some given input against malware inputs that the neural network
was trained on to detect.



Requirements

e Fundamentally, the key necessities of the output of this project is a
functional neural network(s), that can read in files consisting of program
data, and compute a similarity score of the given file against some
malware files of various types.

e This similarity score would fundamentally place the input file within
different malware families, or not at all if it is not malware.

e The remaining core topics of this project, such as technology stacks and
tools, are up to research and design decisions made by the team
throughout this course.



Project Key Deliverables

At its core, this project requires three fundamental phases:

First — Malware Selection, Reverse Engineering, and Data Gathering

Second - Feature Engineering, Data Formatting & Preparation for the Neural Network

Third — Development, training, and testing of the Neural Network



Malware Selection

e Goal - Finding the most popular and widespread
type of malwares.

e Findings - Remote Access Trojans where one of
the most popular forms of Malware types within
all the different types but also within the Trojan
Family.

e Researching for particular malwares, Smoke
Loader and Zbot where found on many different
lists from government websites, to hacker
forums.




Reverse Engineering

e Detect It Easy - Portable Executable (PE ) packers
detection tool, which allows us to analyze the
malicious and suspicious content of malware
binaries.

e |DA - Interactive disassembler allows us to reverse
engineer and analyze executable files such as
malware binaries, also offers control glow graph
view, and scripting support.

e Sandbox Environment - Windows 10 machine for
analyzing malware, in a safe environment.




Additional Tools For Reversing/Research
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Data Gathering

e Goal - Accrue as many samples/strain of
each family of malware family for both
Zbot and Smoke Loader.

e Findings - Acquired sample strains for
malware analysis.

o VirusTotal
o Malware Bazar
o VX Underground

v \‘Ul\' DERGROUND



Programming Language

o C++:

- Windows AP, able to read/dump file
memory

- Most malware are written in C/C++

- Robust, low level language. Best of
memory reading/write/ exploiting.

Windows API can be used by anyone with line
of code to read another programs memory.
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Smoke Loader: The first findings
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Smoke Loader: Analysis thus far
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Feature Engineering, Data Formatting, and Preparation

Examining common and comparing features pertaining to non-malicious

programs and those that are malicious.
o  Static analysis of two malware families to start with: SmokelLoader and ZBot.

Choosing feature categories to develop a feature model.
o Developed a simple, but wholesome set of features for initial extraction and
experimentation.

Developing Python scripts to automate development of neural network
input files built using NumpPy arrays and Pandas dataframes.



Feature Engineering Process Diagram
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Development, Training, and Testing of the Neural Networks

Looking into...

Pytorch
VulSeeker
Gemini
BinFinder
Algorithms:
o Random Forest
o KNN
o XgBoost
m We will be comparing multiple
algorithms against one another
to determine which is most
accurate

Recurrent Neural Network

Feed-Forward Neural Network




Machine Learning Diagram

Malware
Samples

Feature
Engineering

- e

Labeled
Training Data

Labeled
Validation
Data

Algorithm/
Neural

Network

Inference

Confidence
Score




Value Created

Automates the detection process of malware files, indicating whether a file

IS malware or not.

o  Enables the customer to be free from having to manually perform static analysis on
program files.

Categorizes the type of malware family that a given file may belong to in

addition to indicating whether a file may be malicious or not.

o Provides some level of insight into the type of malware provided, thus giving the customer
a better understanding of the malware input at hand.



Lessons Learned

The complexity of breaking down a project into requirements, organizing team functions,
determining tasks per sprint.

The heavy assortment and needed refinement of features that can be used to classify a
binary as either malware, belonging to a specific malware family, and being
non-malicious.

Different types of neural networks, their purposes, strengths and weaknesses.

Further Optimization of ML model requires considerable data.

With number of neural network types that are available, choosing the one to fit the data
problem proved to be challenging.



Future Plans for Next Semester

e To determine the robustness of the current prototype.

o Begin experimenting with hyperparameters such as the depth of the neural network,
activation function, and number of inputs.

e Coupled with researching other open source machine learning models
that we can modify using our data inputs to train.

e Reconsideration, evaluation, and enhancements of the feature model.
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