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Enhancing our software's ability to automatically detect potential malware 
using machine learning algorithms is crucial to effectively combat the 
ever-evolving threats to our computers, networks, and data security, 
reducing the workload and speeding up the detection process.

Purpose

According to IBM’s 2022 Data 
Breach Report, 83% of 
organizations experiences more 
than one data branch during 2022

According to Verizon’s 2022 Data 
Breach Investigations Report, the 
total number number of 
ransomware attacks surged by 13%



● A Binary Similarity Model is an analytical approach of examining and 
computing the similarity of some input (i.e. functions, files) against some 
standard of comparison.
○ This project is a perfect example insofar as some unknown program file can be 

examined and its similarity to known malware can be computed; if such 
similarity is high, then it is likely that such a file is malware and of that malware 
type.

● With a plethora of malware variants and benign programs, it is imperative 
to train a neural network that will compute the degree of similarity 
between some given input against malware inputs that the neural network 
was trained on to detect.

Binary Similarity Model



● Fundamentally, the key necessities of the output of this project is a 
functional neural network(s), that can read in files consisting of program 
data, and compute a similarity score of the given file against some 
malware files of various types.

● This similarity score would fundamentally place the input file within 
different malware families, or not at all if it is not malware.

● The remaining core topics of this project, such as technology stacks and 
tools, are up to research and design decisions made by the team 
throughout this course.

Requirements



● At its core, this project requires three fundamental phases:

● First – Malware Selection, Reverse Engineering, and Data Gathering

● Second – Feature Engineering, Data Formatting & Preparation for the Neural Network

● Third – Development, training, and testing of the Neural Network

Project Key Deliverables



● Goal - Finding the most popular and widespread 
type of malwares.

● Findings - Remote Access Trojans where one of 
the most popular forms of Malware types within 
all the different types but also within the Trojan 
Family. 

● Researching for particular malwares, Smoke 
Loader and Zbot where found on many different 
lists from government websites, to hacker 
forums. 

Malware Selection



● Detect It Easy - Portable Executable (PE ) packers 
detection tool, which allows us to analyze the 
malicious and suspicious content of malware 
binaries.   

● IDA - Interactive disassembler allows us to reverse 
engineer and analyze executable files such as 
malware binaries, also offers control glow graph 
view, and scripting support. 

● Sandbox Environment - Windows 10 machine for 
analyzing malware, in a safe environment.

Reverse Engineering



● WinDbg: Kernel Debugger
● Process Hacker 2
● Various IDA Python Plugins to aid reversing
● ChatGPT, for translating asm to readable c++ code

Additional Tools For Reversing/Research



● Goal - Accrue as many samples/strain of 
each family of malware family for both 
Zbot and Smoke Loader.

● Findings - Acquired sample strains for 
malware analysis. 

○ VirusTotal
○ Malware Bazar
○ VX Underground

Data Gathering



● C++:

 - Windows API, able to read/dump file 
memory

- Most malware are written in C/C++

- Robust, low level language. Best of 
memory reading/write/ exploiting.

Windows API can be used by anyone with line 
of code to read another programs memory.

Programming Language



Smoke Loader: The first findings



Smoke Loader: Analysis thus far



● Examining common and comparing features pertaining to non-malicious 
programs and those that are malicious.

○ Static analysis of two malware families to start with: SmokeLoader and ZBot.

● Choosing feature categories to develop a feature model.
○ Developed a simple, but wholesome set of features for initial extraction and 

experimentation.

● Developing Python scripts to automate development of neural network 
input files built using NumpPy arrays and Pandas dataframes. 

Feature Engineering, Data Formatting, and Preparation



Feature Engineering Process Diagram

Reverse Engineering and 
Data Extraction

Feature Extraction and 
Formatting

Feature Matrices = Neural 
Network Input



Looking into…

● Pytorch
● VulSeeker
● Gemini
● BinFinder
● Algorithms:

○ Random Forest
○ KNN
○ XgBoost

■ We will be comparing multiple 
algorithms against one another 
to determine which is most 
accurate

Development, Training, and Testing of the Neural Networks



Machine Learning Diagram



● Automates the detection process of malware files, indicating whether a file 
is malware or not.

○  Enables the customer to be free from having to manually perform static analysis on 
program files.

● Categorizes the type of malware family that a given file may belong to in 
addition to indicating whether a file may be malicious or not. 

○ Provides some level of insight into the type of malware provided, thus giving the customer 
a better understanding of the malware input at hand.

Value Created



● The complexity of breaking down a project into requirements, organizing team functions, 
determining tasks per sprint.

● The heavy assortment and needed refinement of features that can be used to classify a 
binary as either malware, belonging to a specific malware family, and being 
non-malicious.

● Different types of neural networks, their purposes, strengths and weaknesses.
● Further Optimization of ML model requires considerable data.
● With number of neural network types that are available, choosing the one to fit the data 

problem proved to be challenging.

Lessons Learned



● To determine the robustness of the current prototype.
○ Begin experimenting with hyperparameters such as the depth of the neural network, 

activation function, and number of inputs.

● Coupled with researching other open source machine learning models 
that we can modify using our data inputs to train.

● Reconsideration, evaluation, and enhancements of the feature model.

Future Plans for Next Semester
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