ProDefense - A Binary Similarity
Model for Malware Classification

Research Deliverable
Prepared by ProDefense-Capstone Team

Reverse Engineering
Gursharan Singh, Karanpreet Singh

Data Engineering
Krystian Bista, Rishik Kolli

Machine Learning Pro Defen se | o
Darci Vincent, Riley Hall

Agenda

Purpose

Introduction / Requirements

Project Scope

Malware / Sample Selection

Reverse Engineering

Smoke Loader and ZBot Findings

Feature Engineering

Neural Network Training

Value Created

Takeaways / Next Steps

Purpose

Enhancing our software’s ability to automatically detect potential malware
using machine learning algorithms is crucial to effectively combat the
ever-evolving threats to our computers, networks, and data security,
reducing the workload and speeding up the detection process.

According to IBM's 2022 Data According to Verizon's 2022 Data
Breach Report, 83% of Breach Investigations Report, the
organizations experiences more total number number of

than one data branch during 2022 ransomware attacks surged by 13%

Binary Similarity Model

e A Binary Similarity Model is an analytical approach of examining and
computing the similarity of some input (i.e. functions, files) against some

standard of comparison.
o This project is a perfect example insofar as some unknown program file can be
examined and its similarity to known malware can be computed; if such
similarity is high, then it is likely that such a file is malware and of that malware

type.

e With a plethora of malware variants and benign programs, it is imperative
to train a neural network that will compute the degree of similarity
between some given input against malware inputs that the neural network
was trained on to detect.

Requirements

e Fundamentally, the key necessities of the output of this project is a
functional neural network(s), that can read in files consisting of program
data, and compute a similarity score of the given file against some
malware files of various types.

e This similarity score would fundamentally place the input file within
different malware families, or not at all if it is not malware.

e The remaining core topics of this project, such as technology stacks and
tools, are up to research and design decisions made by the team
throughout this course.

Project Key Deliverables

At its core, this project requires three fundamental phases:

First — Malware Selection, Reverse Engineering, and Data Gathering

Second - Feature Engineering, Data Formatting & Preparation for the Neural Network

Third — Development, training, and testing of the Neural Network

Malware Selection

e Goal - Finding the most popular and widespread
type of malwares.

e Findings - Remote Access Trojans where one of
the most popular forms of Malware types within
all the different types but also within the Trojan
Family.

e Researching for particular malwares, Smoke
Loader and Zbot where found on many different
lists from government websites, to hacker
forums.

Reverse Engineering

e Detect It Easy - Portable Executable (PE) packers
detection tool, which allows us to analyze the
malicious and suspicious content of malware
binaries.

e |DA - Interactive disassembler allows us to reverse
engineer and analyze executable files such as
malware binaries, also offers control glow graph
view, and scripting support.

e Sandbox Environment - Windows 10 machine for
analyzing malware, in a safe environment.

Additional Tools For Reversing/Research

® Process Hacker [METALLICA-PC\Metallica]+ (Administrator)
Hacker View Tools Users Help

% Refresh (2 Options | @ Find handles or DLLs 3#* System information

Proct Services | Network | Dk

Name 2 CPU VO total rate

4= System Idle Process 7438
42 System 063
* | smss.exe
=7 Interrupts
] csrssexe
4 | wininit.exe
40 services.exe
svchost.exe

W VBoxService.oxe

svchost.exe

vehost.exe

"7 audiodg.exe
e

o7 dwm.ece

64 kB/s

54

WinDbg: Kernel Debugger
Process Hacker 2
Various IDA Python Plugins to aid reversing

ChatGPT, for translating asm to readable c++ code

s User name

NT AUTHORITY\SYSTEM
NT AUTHORITY\SYSTEM
NT AUTHORITY\SYSTEM

NT AUTHORITYASYSTEM
NT AUTHORITYASYSTEM
NT AUTHORITY\SYSTEM

3 NT AUTHORITY\SYSTEM

NT AUTHORITYASYSTEM

NT AUTHORITY\SYSTEM
VMETALLICA-P
NT AUTH..\LOCAL SERVICE

3 NT AUTHORITYASYSTEM
B NT AU..ANETW

593 M8
237 MB

M8

NT AUTHORIT TEM
NT AUTH..\LOCAL SERVICE
NT AUTHORITV\SYSTEM

DebugView on \\MAKA (local)
File Edit Capture Options Computer Help
FEHdd { - A BT 9F

Debug Print

[27812]) Failed to initialize

drvl$S
Driver
drvl$S

‘drvlS’

DriverEntry
Succ
DriverDispat

ssfully Loaded
hOpen

Data Gathering

e Goal - Accrue as many samples/strain of
each family of malware family for both
Zbot and Smoke Loader.

e Findings - Acquired sample strains for
malware analysis.

o VirusTotal
o Malware Bazar
o VX Underground

v \‘Ul\' DERGROUND

Programming Language

o C++:

- Windows AP, able to read/dump file
memory

- Most malware are written in C/C++

- Robust, low level language. Best of
memory reading/write/ exploiting.

Windows API can be used by anyone with line
of code to read another programs memory.

RYANIEON

|

Smoke Loader: The first findings

Spawn
SmokeLoader.exe @++++=+rrrseraasy SmokeLoader.exe @e++errroerenas i Explorer.exe
Inject Inject

Stage #1 Stage #2 Stage #3

Smoke Loader: Analysis thus far

eax
[ebp+f1lNewProtect]
dword_4615EA,
dwSize
dword_4615E6,
dword_45CF038
word_4615E0,

byte 4615EE, bl
ds:Virt o =

find_function
[ebp+var_8], eax

ntdil.dll
NtUnmapViewOfSection find_function

[ebp+var_4], eax
loc_1F742

NtWriteVirtualMemory
kernel32.dll

CloseHandle

CreateFileA

CreateProcessA

ExitProcess

GetCommandLineA

Feature Engineering, Data Formatting, and Preparation

Examining common and comparing features pertaining to non-malicious

programs and those that are malicious.
o Static analysis of two malware families to start with: SmokelLoader and ZBot.

Choosing feature categories to develop a feature model.
o Developed a simple, but wholesome set of features for initial extraction and
experimentation.

Developing Python scripts to automate development of neural network
input files built using NumpPy arrays and Pandas dataframes.

Feature Engineering Process Diagram

Feature Extraction and Feature Matrices = Neural

Reverse Engineering and

Data Extraction

Formatting Network Input

1001010111010
011MALWARE1 def norm(df): File 3ize | Memory | Hastes | Functions
0100101010100 ;es:df;om: 15[1]139235 | [1,12,7)
101 or f in df.columns: I TOE e
1010101010101 max=df[f].max() = | X | wi 1 [11; 3]
0010101010101 res=df[f] / max | 11139235 | [1,12,7
4
0101010101010 . — 22]0]1312132 | [0, 2, 3]
0101010111110
00001010 python build data.py

Development, Training, and Testing of the Neural Networks

Looking into...

Pytorch
VulSeeker
Gemini
BinFinder
Algorithms:
o Random Forest
o KNN
o XgBoost
m We will be comparing multiple
algorithms against one another
to determine which is most
accurate

Recurrent Neural Network

Feed-Forward Neural Network

Machine Learning Diagram

Malware
Samples

Feature
Engineering

- e

Labeled
Training Data

Labeled
Validation
Data

Algorithm/
Neural

Network

Inference

Confidence
Score

Value Created

Automates the detection process of malware files, indicating whether a file

IS malware or not.

o Enables the customer to be free from having to manually perform static analysis on
program files.

Categorizes the type of malware family that a given file may belong to in

addition to indicating whether a file may be malicious or not.

o Provides some level of insight into the type of malware provided, thus giving the customer
a better understanding of the malware input at hand.

Lessons Learned

The complexity of breaking down a project into requirements, organizing team functions,
determining tasks per sprint.

The heavy assortment and needed refinement of features that can be used to classify a
binary as either malware, belonging to a specific malware family, and being
non-malicious.

Different types of neural networks, their purposes, strengths and weaknesses.

Further Optimization of ML model requires considerable data.

With number of neural network types that are available, choosing the one to fit the data
problem proved to be challenging.

Future Plans for Next Semester

e To determine the robustness of the current prototype.

o Begin experimenting with hyperparameters such as the depth of the neural network,
activation function, and number of inputs.

e Coupled with researching other open source machine learning models
that we can modify using our data inputs to train.

e Reconsideration, evaluation, and enhancements of the feature model.

AN
References

https://hbr.org/2023/05/the-devastating-business-impacts-of-a-cyber-breach

https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-216a

https://www.crowdstrike.com/cybersecurity-101/malware/types-of -malware/

https://www.ibm.com/topics/knn#:~:text=The%20k%2Dnearest%20neighbors%20algorithm%2C%20als0%20k
nown%20as%20KNN%20or.0f%20an%20individual%20data%20point

https://hbr.org/2023/05/the-devastating-business-impacts-of-a-cyber-breach
https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-216a
https://www.crowdstrike.com/cybersecurity-101/malware/types-of-malware/
https://www.ibm.com/topics/knn#:~:text=The%20k%2Dnearest%20neighbors%20algorithm%2C%20also%20known%20as%20KNN%20or,of%20an%20individual%20data%20point
https://www.ibm.com/topics/knn#:~:text=The%20k%2Dnearest%20neighbors%20algorithm%2C%20also%20known%20as%20KNN%20or,of%20an%20individual%20data%20point

